NoDaLiDa 2023 - May 22-24, 2023


NorBench -- A Benchmark for Norwegian Language Models

David Samuel, Andrey Kutuzov, Samia Touileb, Erik Velldal, Lilja Øvrelid, Egil Rønningstad, Elina Sigdel, Anna Sergeevna Palatkina

We present NorBench: a streamlined suite of NLP tasks and probes for evaluating Norwegian language models (LMs) on standardized data splits and evaluation metrics. We also introduce a range of new Norwegian language models (both encoder and encoder-decoder based). Finally, we compare and analyze their performance, along with other existing LMs, across the different benchmark tests of NorBench. 

Evaluating morphological generalisation in machine translation by distribution-based compositionality assessment

Anssi Moisio, Mathias Creutz, Mikko Kurimo

Compositional generalisation refers to the ability to understand and generate a potentially infinite number of novel meanings using a finite group of known primitives and a set of rules to combine them. The degree to which artificial neural networks can learn this ability is an open question. Recently, some evaluation methods and benchmarks have been proposed to test compositional generalisation, but not many have focused on the morphological level of language. We propose an application of the previously developed distribution-based compositionality assessment method to assess morphological generalisation in NLP tasks, such as machine translation or paraphrase detection. We demonstrate the use of our method by comparing translation systems with different BPE vocabulary sizes. The evaluation method we propose suggests that small vocabularies help with morphological generalisation in NMT. 

Distilling Estonian Text Domains for Production-Oriented Machine Translation

Elizaveta Korotkova, Mark Fishel

This paper explores knowledge distillation for multi-domain neural machine translation (NMT). We focus on the Estonian-English translation direction and experiment with distilling the knowledge of multiple domain-specific teacher models into a single student model that is tiny and efficient. Our experiments use a large parallel dataset of 18 million sentence pairs, consisting of 10 corpora, divided into 6 domain groups based on source similarity, and incorporate forward-translated monolingual data. Results show that tiny student models can cope with multiple domains even in case of large corpora, with different approaches benefiting frequent and low-resource domains. 

On the Concept of Resource-Efficiency in NLP

Luise Dürlich, Evangelia Gogoulou, Joakim Nivre

Resource-efficiency is a growing concern in the NLP community. But what are the resources we care about and why? How do we measure efficiency in a way that is reliable and relevant? And how do we balance efficiency and other important concerns? Based on a review of the emerging literature on the subject, we discuss different ways of conceptualizing efficiency in terms of product and cost, using a simple case study on fine-tuning and knowledge distillation for illustration. We propose a novel metric of amortized efficiency that is better suited for life-cycle analysis than existing metrics.